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In this paper thereis examined the limiting transition from the quantum equations of

motion for the density matrix, describing
to the equation of motion for the classical

the Gibbs ensemble in quantum mechanics,
distribution functions. The special condi-

tion of - distinguishability of the particles is established.

The most—general quantum ensemble of
N particles 1s described by the density
matrix (by the statistical operator, accord-
ing to von Neumann’s nomermnclature) o.
The matrix elements of this matrix may
be written in the following form:

(4195 .

o Gr- gl giga ... g ... ) =
=(q]el g’ (1)
where the letter ¢, denotes the totality

of the coordinates of the %th particle.
The matrix p satisfies the equation of motion:

ih % — Hy— oH, (2)

~where /1 is Hamiltonian for the system
of particles being investigated. The follow-
ing conditions are imposed upon the
matrix pg: |

(gpig)=(q"1pig)
(Hermitian conjugacy) and, if in addition
the condition of indistinguishability of the
particles is imposed, then

Po(qlela) =4 (gleiq), (3a)
Py(qlelgy= +(qlpiq"), (3b)
PePy(qlpi g )=+ (¢lpl¢). (3c)

Here P, denotes the permutation of the
coordinates g; of the ith particle and the
coordinates gy of the kth particle. In a simi-
lar manner P denotes the permutation
of.the ¢ and the g coordinates. P, P,
denotes the permutation of the ith and
the kth particles. The plus or minus sign

(3) .

is taken according to whether the particles
obey Bose or Fermi statistics, respecti-
vely. The condition of symmetry in the
particles (3c) (indistinguishability of the
particles) may be considered as a result of
'(3a) and (3b)*.

At a first glance both the matrix p (1)
and its equation (2) differ considerably
from the classical distribution function
f(¢, p) in the phase space (p denotes the
impulses of the particles) and from the
equation which this distribution function
satisfies, namely: 4
of 0H of oH of
5i=~(op 990 55)=—1H, fliy (&
where H=H (p, q) denotes the classical
Hamiltonian function for a system of
particles **,

However, the connection between the
classical distribution function f(gq, p) and
the quantum matrix p can be established
if one turns to the so-called mixed repre-
sentation (p, g) of the matrix p. Therefore let
us determine the matrix in the mixed repres-

* Conditions (3a) and (3b) are equivalent to
the condition of symmetry or antisymmetry of
wave functions with respect to the permutation
of any pair of particles. \ :

** We obviously choose here only one pair of
canonical, conjugate coordinates and impulses
(P, g). We will proceed in the same manner in
what follows also, since all our consideration are
casily generalized for the case of any number of
degres of freedom, except for one point which
will be especially noted further on.
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entation (¢|p|p) by means of Fourier trans-
formation of the matrix Qq!o] q'):

zpq'

A 5

ol p)= 5(1! ”' (5)
_ing’

e D _,

(71e]¢") j(qw@p)l/z—ﬂ—]dp (5")

In a similar manner, for any mechanic-
al quantity L, let us introduce instead of
the matrix elements (¢1L]¢") the mixed

elements:
, 1Pq
N
' — | §)
(g1 L]|p) j(q Lig )Vi'ng’ (6)
TPQ

—dp. ()

(QJLi'q’)zj (g1 L] p) 1/

The mixed matrix elements may be
replaced by new quantities which are con-
nected with them by the following relatlons

ipg

R(q,p)=(qlplp)e "V 2=h, (7)
L(q,p)=(9|Llp)8— v 2wk (8)

‘These new quantities, which are func-
Lions of p, g, fully replace the initial quan-

tities (g]pig’) and (g|L[q’).
Actually assummcr that ¢’ = ¢4 ¢withthe
help of (5}, (6"), (7) and (8) we may obtlain:
h 7
(QIp=g+E): (ga p) Onh dp, (7)
ipg

r _ =

(g1 Lig+8) =] L(g, D) - dp. (8")

The quantity L (g, p) (8) possesses the
extraordinary properties that, if the cor-
responding classical quantlby Letass (4, p)
does not contain the products of the non-
commuting (in quantum mechanics) quan-
tities, . e. has the form Lgus(¢,p)=
=f(9)+<(p), then, the quantity L (g, p),
determined accordmg to (8), is equal to
Leaass (g, p). However, if such products are
encountered (for 'example, p-q), then
L(q, p)= Lciass (¢, p) + terms of a higher
order with respect to £ *.

Therefore, it may be expected that not the

matrix (g |pjp) but the function R (g, p),

which we introduced, will be the analogue
of the classical distribution function f(g, p)
and will tend to f(¢,p) when 2—0.
This expectation is justified, although
not in all respects (see below).
Before proceeding to the connection be-

~tween R (g, p) and f(q, p), let us formulate

conditions (3), (3a), (3b) and (3c), impos-
ed on the matrix p, in terms of ‘the new
function R.

In order to deduce the condition of Hermi-.
tian conjugacy (3) with respect to R (¢, p)
let us express (plp|y’)=(g[p|g+¥%) in (3)
in terms of R(g,z) by means of (7). -
Then we obtain without difficulty:

Vi B geg
R (g,p)= | R(g+Eptn)-c b 200 (9)

The condition of Hermitian conjugacy
for L(g, p) is {ormulated in exactly the
same manner. In the case when L (g, p)_—:
=f(¢)+e(p) 1t 15 altogether t{rivial,
namely L*(q,p)=L(q, p).

The state of affairs with respect to the
complementary condition of symmetry
imposed upon the function R (¢, p) 1s alto-
gether different. On the basis of (5), it
follows (since the product p-g¢ In the

exponent is the sum Z Pr - grinthe case

ofseveral partieles from (Sa) (3b) and (3¢) that

d(glolp) =4 (g Ipbp (3a’)
(Q/\Plp =4(q]p| (3b7)
Pqu(Qip%p)— + (g1p] p) (3¢”)

Furthermore, P, rctains its former mean-
ing, while P, denotes the permutation
of the impulses p;y and p;, of the ith and
kih particles.

On the basis of (7), from (3a’),
and (3c¢’) we obtain for R (g, p):

+ Ry, 1)e

PyR(q,p)=+4R(q,r)e
PGPPR(q,])):.R(g, p)

(3b")

K .
T — p;—p)(xi—x7)

PR (g,p) = . (10a)

1
— (p;—pr)xy—xyp)

, (10b)
(10c)

* See J. P. Terletzky's paper in the Journal
of Experimental and Tleoretical Physics (dypn.
orer. u teop. ¢ua. ) 1937, In this work attention
is not paid to the connection befween the consi-
derations mentioned and both the general theory -
of transformation and the method of the density
matrix
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Thus we see that the latter condition
(symmetry in the particles) does not con-
tain' 72 and may be formulated in the clas-
sical manner. On the contrary, the special
conditions of symmetry in the impulses
and the coordinates (10a) and (10b) con-
tains 4, forming an essentially singular point.

The function R (¢, p),similar to (¢|p|g¢’),
permits one to calculate the average value
of any quantity L(p, ¢). Namely, if the
quantity L 1is represented by the opera-

tor 4, then the average, value, L, is:

L=Sp(Le) =\ (g L1} (¢ ¢\ 9)dgdy’. (11

Here, expressing (¢ {L| ¢’) and (¢’ |p|¢) in
terms of L (¢, p) and R (¢, p), respectively,
with the aid of (7’) and (8) we will get:

. E7

+— (dédndpdg i o
LZL\J (z'mz)a Le 7. L(q, p) X

X R(qg+¢ p-+m),

- dp d * )
L= S L L, p)- B (g, p),  (12)

which 1s completely analogous to the clas-
sical average: :

- dpd ' "
L=\ 225 Luws (0, 2) - £ (4, ). (117)

Further it is easy to be convinced that

(11)

or

Lhe average value of (11) or (12) for the-

Hermitian operator L is real as it should
he *,

Substituting R (¢, p) tor (glpl¢’) in
equation (2) [with the aid of (7)], and
H (g, p) tor (¢ H ¢') [with the aid of (8)],
we obtain Lhe equalion of motion for
I (g, p):

IRt (g, p)

Ll "‘*"m(r)-t ==

1idn —i i .
=\ C R (g, pr ) R (g3 ) —

—H(¢+5p) R p+0)) (12)
where H (g, p) is nothing more than Lhe
classical Hamilton [unction of a system
ol particles. 1t is not difficult to verily
that conditions (9) and{(10) are invariant,
. e. holding for any moment, they stil’
continue to hold for all moments also.

* For this (9) inust be employed, applying
it to L(q, p).

For the purpose of establishing the
connection with the equation for the
classical distribution function (4), let us
expand R and H in (9) and (12) into.
powers of £, 1. Then we obtain a sum of the
integrals of the form:

+ @ En
2

didn Fg
]nm:S S i € o

2nh
-— OO

These integrals may be edsily calculated
with the aid of &-function. Actually,

,En,»q’m'

(13)

) + oo . En
I ( ANm ([ E4qdEdn o EF
AL == T ) 5 2h 9™ ¢ -
- 0
+oo

dme (£)

= (:F ih)‘m * S En " d,;m' . dE:

= (4 Zh)™ + m! B, (137)

where 8y, =1, when n=m, and 8ym =0,
when n = m. :

Making use of this formula, instead
of (9) and (12) we gel:

(e o]

, (th)" 0*R (q, p)
R (97 p):‘Z n! _ap”(’)‘g”
=0 )
oo

dR (g, — ih)r1 |
e = 3w Ry, 15)

)
d nl
l '

, (14)

where
a’lH a'rlR allH aIiR )
[H, Rlu=

3}9" ' (99’" - aqn ' 5]7"’ (16)

18 the Poisson bracket of the nth order*.

In order that these equations might
give an approximation to the classical
equation with h--0, it is necessary to be
able to expand R into powers of 4. This
can only be accomplished if. we neglect
the conditions for symmetry or antisym-
metry (10a) and (10b).

In particular, these conditions are absent
in general for the Gibbs ensemble, formed
by systems consisting of one particle or
of dissimilar (indistinguishable) particles.

Then, taking the expansion:

R= i R A

a= ()a

(17)

* Iiquations (15),and (16) arcieasily generaliz--
ed for®any number of degrees of freedom.
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instead of (14) and (15) we obtain a system

of equations for the function R, *:
k<

P Rn_..]:

o op"dq

(14)

[, Rpso—rlrs (157

the first equation of each
equations running as follows:

,* * 1 O*R
I{{):R()’ 1_3‘ B]_"f‘i—! 527”’0%7

O4R,

system of

/l wn
oy [H, Bylatop [H, Rols, - (157)

In particular, the equation for R,
agrees exactly with equation (4) for the
classical distribution function f(g, p) and
this proves the direct connection between
R(q, q) and (g, p),

At the same time we must come to
the conclusion that the condition of the
indistinguishability of the particles 1s
«more quantum» than the equations of
motion, since while fulfilling this condi-
tion R cannot be expanded into powers of /.

The reason for this latter circumstance,
expressed by condition (10), may be dis-
cerned most easily if we turn to the

1

O (quge) V" (q193) = A (q:02) A (q195) e”

+ A (¢:01) 4 (4192) €"
therefore, the diagonal term will Dbe:

~ [S(¢2q1) =S (q142)]

representation of the matrix p given in (1)
[similar considerations may be given 1in
the (g, p) representation also].

The wave functions U (g) [and also
U (p)], as is known, cannot be expanded
with respect to the 2 powers, 'and when

I — 0, they tend to |
. 5(q)

;54
P(=A4(ge "

where S(¢) is the action function. On the

other hand, .the matrix p is a bilinear

formation in O (g), the typical term of

which will be: »

(v (g)=4(9) A(g) e
and for the diagonal terms (g = ¢’) it does
not contain A-in the exponent. Therefore,
t"e bilinear formation p may be expanded
into powers of i. This holds for an ensemble
composed of many particles also, since -
the condition of symmetry and anitsym-
metry of O is not imposed. However, if
this condition is kept, the state of affairs
will be different, which is easy to explain
by using two particles as an example.

In this case the symmetrized functions
b (g,9,) will be |

7 B @-S (@

- S (q19.)

) (9192):A(9192)_6h‘ +

=5 (q:q,)

% S(qeq,

+- A (4:9,) " .

here the plus sign is taken for Bose sla-
tistics, while the. minus sign for Fermi
statistics. The typical term 1 (¢lp’' ¢’)
in this case will be: ‘

i

L [S(q1q2)—5S (q1¢2)] —[S(g2q1)— S (g2q 1))

+ A(9:9,) A(g2q1)e " +
—[S (qrqz) =S (g2a1)]

+ A (q,9.) 4 (9’291) el )

D (qyq) v (q192) = A (q102) A (q10) + A (42¢1) A (4291) £
1 - .
+ 24 (q,95) A (9291) 005{7; [S(q.92) — N (9291)]}‘

[. e. it contains the Plank constant /i 1n
a singular manner. ‘

* We may become convinced without great
difficulty that, as soon as equation (15") is [ul-
filled for 1t,, then the equation for R}, is fulfilled
identically in virtue of (14°), . e. the condition
(14’) is invariant.

Thus, the quantum function R (¢, p) is
approximated (with % - 0) by the clasgical
function f (g, p) only for an emnsemble of
different (differing slightly in any way,
but nevertheless net similar) particles.
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